Document Type

Article

Source of Publication

Journal of Sound and Vibration

Publication Date

3-17-2018

Abstract

© 2017 The Author(s) The simulation model which examines the dynamic behavior of real structures needs to address the impact of uncertainty in both geometry and material parameters. This article investigates three-dimensional finite element models for structural dynamics problems with respect to both model and parameter uncertainties. The parameter uncertainties are determined via laboratory measurements on several beam-like samples. The parameters are then considered as random variables to the finite element model for exploring the uncertainty effects on the quality of the model outputs, i.e. natural frequencies. The accuracy of the output predictions from the model is compared with the experimental results. To this end, the non-contact experimental modal analysis is conducted to identify the natural frequency of the samples. The results show a good agreement compared with experimental data. Furthermore, it is demonstrated that geometrical uncertainties have more influence on the natural frequencies compared to material parameters and material uncertainties are about two times higher than geometrical uncertainties. This gives valuable insights for improving the finite element model due to various parameter ranges required in a modeling process involving uncertainty.

ISSN

0022-460X

Publisher

Academic Press

Volume

417

First Page

294

Last Page

305

Disciplines

Life Sciences

Keywords

Experimental modal analysis, Finite element modeling, Parameter identification, Structural vibration, Uncertainty quantification

Scopus ID

85041499653

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Hybrid: This publication is openly available in a subscription-based journal/series

Included in

Life Sciences Commons

Share

COinS