Outlier Detection: Methods, Models, and Classification

Document Type

Article

Source of Publication

ACM Computing Surveys

Publication Date

6-1-2020

Abstract

© 2020 ACM. Over the past decade, we have witnessed an enormous amount of research effort dedicated to the design of efficient outlier detection techniques while taking into consideration efficiency, accuracy, high-dimensional data, and distributed environments, among other factors. In this article, we present and examine these characteristics, current solutions, as well as open challenges and future research directions in identifying new outlier detection strategies. We propose a taxonomy of the recently designed outlier detection strategies while underlying their fundamental characteristics and properties. We also introduce several newly trending outlier detection methods designed for high-dimensional data, data streams, big data, and minimally labeled data. Last, we review their advantages and limitations and then discuss future and new challenging issues.

ISSN

0360-0300

Publisher

Association for Computing Machinery

Volume

53

Issue

3

Last Page

37

Disciplines

Computer Sciences

Keywords

anomaly detection, Outlier detection, semi-supervised learning, unsupervised learning

Scopus ID

85089420058

Indexed in Scopus

yes

Open Access

no

Share

COinS