ORCID Identifiers

0000-0003-1150-2404

Document Type

Article

Source of Publication

Eurasip Journal on Information Security

Publication Date

1-1-2017

Abstract

© The Author(s). 2017. The rapid increase in wired Internet speed and the constant growth in the number of attacks make network protection a challenge. Intrusion detection systems (IDSs) play a crucial role in discovering suspicious activities and also in preventing their harmful impact. Existing signature-based IDSs have significant overheads in terms of execution time and memory usage mainly due to the pattern matching operation. Therefore, there is a need to design an efficient system to reduce overhead. This research intends to accelerate the pattern matching operation through parallelizing a matching algorithm on a multi-core CPU. In this paper, we parallelize a bit-vector algorithm, Myers algorithm, on a multi-core CPU under the MapReduce framework. On average, we achieve four times speedup using our multi-core implementations when compared to the serial version. Additionally, we use two implementations of MapReduce to parallelize the Myers algorithm using Phoenix++ and MAPCG. Our MapReduce parallel implementations of the Myers algorithm are compared with an earlier message passing interface (MPI)-based parallel implementation of the algorithm. The results show 1.3 and 1.7 times improvement for Phoenix++ and MAPCG MapReduce implementations over MPI respectively.

ISSN

2510-523X

Publisher

Springer

Volume

2017

Issue

1

First Page

9

Disciplines

Computer Sciences

Keywords

Information security, Intrusion detection systems, MapReduce, Pattern matching, Signature-based

Scopus ID

85086990342

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS