Assessment of AgNPs@Cu@Alginate Composite for Efficient Water Treatment: Effect of the Content of Cu(II) Crosslinking Agent

Document Type


Source of Publication

Journal of Polymers and the Environment

Publication Date



This work concerns the preparation of multifunctional composite beads based on Cu-Alginate and AgNPs. First, the Cu-Alginate hydrogel was obtained by adding alginate at different concentrations of the crosslinking agent Cu2+ (2%, 4%, and 8%). The obtained hydrogels were modified by Ag+ species then by a chemical treatment (using NaBH4) followed by freeze-drying. The obtained aerogel beads were characterized by different methods and then were used as catalysts for the reduction of organic pollutants in a simple and binary system, and also as antibacterial and antifungal agents on different strains. The results showed the formation of a porous structure containing well-dispersed silver nanoparticles in the alginate matrix. The concentration of the Cu2+ crosslinking agent significantly influences the content of encapsulated AgNPs, the catalytic activity, and thus the antibacterial and antifungal properties of the resulting material. In the catalysis part, the Cu(2%)-ALG(AgNPs) material was selected as the most efficient catalyst due to the presence of high content of AgNPs and their good dispersion in the alginate biopolymer. High conversions of MO, 4-NP, MB, and CR were obtained in a reaction time of 2.5, 26, 23, and 29 min, respectively. Thus for binary systems, the Cu(2%)-ALG(AgNPs) catalyst was more selective with the MB dye. For antibacterial and antifungal activities all materials were effective through six strains, but it was shown that materials with unreduced Ag+ species were more effective.




Springer Science and Business Media LLC


Life Sciences


Aerogel beads, AgNPs, Antimicrobial activities, Catalyst, Catalytic reduction, Cu-alginate

Scopus ID


Indexed in Scopus


Open Access