ORCID Identifiers

0000-0002-5166-4873

Document Type

Article

Source of Publication

Sensors (Switzerland)

Publication Date

3-15-2018

Abstract

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. Sedentary behaviour is increasing due to societal changes and is related to prolonged periods of sitting. There is sufficient evidence proving that sedentary behaviour has a negative impact on people’s health and wellness. This paper presents our research findings on how to mine the temporal contexts of sedentary behaviour by utilizing the on-board sensors of a smartphone. We use the accelerometer sensor of the smartphone to recognize user situations (i.e., still or active). If our model confirms that the user context is still, then there is a high probability of being sedentary. Then, we process the environmental sound to recognize the micro-context, such as working on a computer or watching television during leisure time. Our goal is to reduce sedentary behaviour by suggesting preventive interventions to take short breaks during prolonged sitting to be more active. We achieve this goal by providing the visualization to the user, who wants to monitor his/her sedentary behaviour to reduce unhealthy routines for self-management purposes. The main contribution of this paper is two-fold: (i) an initial implementation of the proposed framework supporting real-time context identification; (ii) testing and evaluation of the framework, which suggest that our application is capable of substantially reducing sedentary behaviour and assisting users to be active.

ISSN

1424-8220

Publisher

MDPI AG

Volume

18

Issue

3

First Page

874

Disciplines

Computer Sciences

Keywords

Context recognition, Self-management, Unhealthy sitting habits

Scopus ID

85044297031

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS