Design and performance analysis of a virtual ring architecture for smart grid privacy

Document Type

Article

Source of Publication

IEEE Transactions on Information Forensics and Security

Publication Date

2-1-2014

Abstract

The traditional electrical grid has become inadequate in meeting the needs and demands of electricity users in the 21st century. To address this challenge, smart grid technologies have emerged, which promise more efficient production and usage of electricity through bidirectional interactions between the consumer and the utility provider. This two-way interaction allows electricity to be generated in real time based on the actual needs of the consumers. However, this two-way interaction also raises concerns related to the privacy and the personal habits of consumers. To protect sensitive energy usage information of consumers, we propose a virtual ring architecture that can provide a privacy protection solution using symmetric or asymmetric encryptions of customers' requests belonging to the same group. We compare the efficiency of our proposed approach with two recently proposed smart grid privacy approaches namely, one based on blind signature and other based on a homomorphic encryption solution. We show that our approach maintains the privacy of customers while reducing the performance overhead of cryptographic computations by more than a factor of 2 when compared with the aforementioned past solutions. We further demonstrate that our smart grid privacy solution is simple, scalable, cost-effective, and incurs minimal computational processing overheads. © 2013 IEEE.

ISSN

1556-6013

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Volume

9

Issue

2

First Page

321

Last Page

329

Disciplines

Business | Computer Sciences

Keywords

advanced metering infrastructure, man-in-the-middle attack, Privacy protection, security, smart grid

Scopus ID

84893349141

Indexed in Scopus

yes

Open Access

no

Share

COinS