A latent model for ad hoc table retrieval

Document Type

Conference Proceeding

Source of Publication

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Publication Date

1-1-2020

Abstract

© Springer Nature Switzerland AG 2020. The ad hoc table retrieval task is concerned with satisfying a query with a ranked list of tables. While there are strong baselines in the literature that exploit learning to rank and semantic matching techniques, there are still a set of hard queries that are difficult for these baseline methods to address. We find that such hard queries are those whose constituting tokens (i.e., terms or entities) are not fully or partially observed in the relevant tables. We focus on proposing a latent factor model to address such hard queries. Our proposed model factorizes the token-table co-occurrence matrix into two low dimensional latent factor matrices that can be used for measuring table and query similarity even if no shared tokens exist between them. We find that the variation of our proposed model that considers keywords provides statistically significant improvement over three strong baselines in terms of NDCG and ERR.

ISBN

9783030454418

ISSN

0302-9743

Publisher

Springer

Volume

12036 LNCS

First Page

86

Last Page

93

Disciplines

Computer Sciences | Education | Mathematics

Keywords

Artificial intelligence, Computer science, Computers, Baseline methods, Co-occurrence-matrix, Latent factor, Latent factor models, Latent models, Low dimensional, Query similarity, Semantic matching, Semantics

Scopus ID

85084174998

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Bronze: This publication is openly available on the publisher’s website but without an open license

Share

COinS