A latent model for ad hoc table retrieval
Document Type
Conference Proceeding
Source of Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Publication Date
1-1-2020
Abstract
© Springer Nature Switzerland AG 2020. The ad hoc table retrieval task is concerned with satisfying a query with a ranked list of tables. While there are strong baselines in the literature that exploit learning to rank and semantic matching techniques, there are still a set of hard queries that are difficult for these baseline methods to address. We find that such hard queries are those whose constituting tokens (i.e., terms or entities) are not fully or partially observed in the relevant tables. We focus on proposing a latent factor model to address such hard queries. Our proposed model factorizes the token-table co-occurrence matrix into two low dimensional latent factor matrices that can be used for measuring table and query similarity even if no shared tokens exist between them. We find that the variation of our proposed model that considers keywords provides statistically significant improvement over three strong baselines in terms of NDCG and ERR.
DOI Link
ISBN
9783030454418
ISSN
Publisher
Springer
Volume
12036 LNCS
First Page
86
Last Page
93
Disciplines
Computer Sciences | Education | Mathematics
Keywords
Artificial intelligence, Computer science, Computers, Baseline methods, Co-occurrence-matrix, Latent factor, Latent factor models, Latent models, Low dimensional, Query similarity, Semantic matching, Semantics
Scopus ID
Recommended Citation
Bagheri, Ebrahim and Al-Obeidat, Feras, "A latent model for ad hoc table retrieval" (2020). All Works. 147.
https://zuscholars.zu.ac.ae/works/147
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Bronze: This publication is openly available on the publisher’s website but without an open license