Document Type

Article

Source of Publication

Applied Sciences (Switzerland)

Publication Date

1-6-2019

Abstract

© 2019 by the authors. Fog computing is a paradigm that extends cloud computing and services to the edge of the network in order to address the inherent problems of the cloud, such as latency and lack of mobility support and location-awareness. The fog is a decentralized platform capable of operating and processing data locally and can be installed in heterogeneous hardware which makes it ideal for Internet of Things (IoT) applications. Intrusion Detection Systems (IDSs) are an integral part of any security system for fog and IoT networks to ensure the quality of service. Due to the resource limitations of fog and IoT devices, lightweight IDS is highly desirable. In this paper, we present a lightweight IDS based on a vector space representation using a Multilayer Perceptron (MLP) model. We evaluated the presented IDS against the Australian Defense Force Academy Linux Dataset (ADFA-LD) and Australian Defense Force AcademyWindows Dataset (ADFA-WD), which are new generation system calls datasets that contain exploits and attacks on various applications. The simulation shows that by using a single hidden layer and a small number of nodes, we are able to achieve a 94% Accuracy, 95% Recall, and 92% F1-Measure in ADFA-LD and 74% Accuracy, 74% Recall, and 74% F1-Measure in ADFA-WD. The performance is evaluated using a Raspberry Pi.

ISSN

2076-3417

Publisher

MDPI AG

Volume

9

Issue

1

Disciplines

Physical Sciences and Mathematics

Keywords

Fog computing, Intrusion detection, IoT security, Multilayer Perceptron

Scopus ID

85059548862

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS