Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images
ORCID Identifiers
Document Type
Article
Source of Publication
IEEE Transactions on Medical Imaging
Publication Date
8-1-2020
Abstract
© 1982-2012 IEEE. Coronavirus Disease 2019 (COVID-19) spread globally in early 2020, causing the world to face an existential health crisis. Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19. However, segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues. Further, collecting a large amount of data is impractical within a short time period, inhibiting the training of a deep model. To address these challenges, a novel COVID-19 Lung Infection Segmentation Deep Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices. In our Inf-Net, a parallel partial decoder is used to aggregate the high-level features and generate a global map. Then, the implicit reverse attention and explicit edge-attention are utilized to model the boundaries and enhance the representations. Moreover, to alleviate the shortage of labeled data, we present a semi-supervised segmentation framework based on a randomly selected propagation strategy, which only requires a few labeled images and leverages primarily unlabeled data. Our semi-supervised framework can improve the learning ability and achieve a higher performance. Extensive experiments on our COVID-SemiSeg and real CT volumes demonstrate that the proposed Inf-Net outperforms most cutting-edge segmentation models and advances the state-of-the-art performance.
DOI Link
ISSN
Publisher
Institute of Electrical and Electronics Engineers Inc.
Volume
39
Issue
8
First Page
2626
Last Page
2637
Disciplines
Computer Sciences
Keywords
COVID-19, CT image, infection segmentation, semi-supervised learning
Recommended Citation
Fan, Deng Ping; Zhou, Tao; Ji, Ge Peng; Zhou, Yi; Chen, Geng; Fu, Huazhu; Shen, Jianbing; and Shao, Ling, "Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images" (2020). All Works. 2008.
https://zuscholars.zu.ac.ae/works/2008
Indexed in Scopus
no
Open Access
yes
Open Access Type
Bronze: This publication is openly available on the publisher’s website but without an open license