Document Type

Article

Source of Publication

IEEE Access

Publication Date

1-1-2020

Abstract

© 2013 IEEE. Recent studies have demonstrated that most commercial facial analysis systems are biased against certain categories of race, ethnicity, culture, age and gender. The bias can be traced in some cases to the algorithms used and in other cases to insufficient training of algorithms, while in still other cases bias can be traced to insufficient databases. To date, no comprehensive literature review exists which systematically investigates bias and discrimination in the currently available facial analysis software. To address the gap, this study conducts a systematic literature review (SLR) in which the context of facial analysis system bias is investigated in detail. The review, involving 24 studies, additionally aims to identify (a) facial analysis databases that were created to alleviate bias, (b) the full range of bias in facial analysis software and (c) algorithms and techniques implemented to mitigate bias in facial analysis.

ISSN

2169-3536

Publisher

Institute of Electrical and Electronics Engineers Inc.

Volume

8

First Page

130751

Last Page

130761

Disciplines

Computer Sciences

Keywords

Algorithmic discrimination, bias, classification bias, facial analysis, unfairness

Scopus ID

85089346430

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS