Local mean consistency on numerical solutions of stochastic wave equation with cubic nonlinearities on 2D rectangles

Author First name, Last name, Institution

Haziem M. Hazaimeh, Zayed University

Document Type

Conference Proceeding

Source of Publication

AIP Conference Proceedings

Publication Date

6-5-2017

Abstract

© 2017 Author(s). In this article we study that the linear-implicit Euler method of the solution of nonlinear stochastic wave equation in 2 dimensions has the non-exploding explicit representation and is mean consistent. In [15], we proved that the strong Fourier solution of the semi-linear wave equations exists and is unique on an appropriate Hilbert space. A linear-implicit Euler method is used to discretize the related Fourier coefficients and mean consistency is discussed.

ISBN

9780735415065

ISSN

0094-243X

Publisher

American Institute of Physics Inc.

Volume

1836

Disciplines

Mathematics

Keywords

Fourier solution, linear-implicit Euler method, local mean consistency, Nonlinear stochastic wave equation, numerical solution

Scopus ID

85021311782

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Bronze: This publication is openly available on the publisher’s website but without an open license

Share

COinS