Malware Classification with Deep Convolutional Neural Networks
Document Type
Conference Proceeding
Source of Publication
2018 9th IFIP International Conference on New Technologies, Mobility and Security, NTMS 2018 - Proceedings
Publication Date
3-29-2018
Abstract
© 2018 IEEE. In this paper, we propose a deep learning framework for malware classification. There has been a huge increase in the volume of malware in recent years which poses a serious security threat to financial institutions, businesses and individuals. In order to combat the proliferation of malware, new strategies are essential to quickly identify and classify malware samples so that their behavior can be analyzed. Machine learning approaches are becoming popular for classifying malware, however, most of the existing machine learning methods for malware classification use shallow learning algorithms (e.g. SVM). Recently, Convolutional Neural Networks (CNN), a deep learning approach, have shown superior performance compared to traditional learning algorithms, especially in tasks such as image classification. Motivated by this success, we propose a CNN-based architecture to classify malware samples. We convert malware binaries to grayscale images and subsequently train a CNN for classification. Experiments on two challenging malware classification datasets, Malimg and Microsoft malware, demonstrate that our method achieves better than the state-of-the-art performance. The proposed method achieves 98.52% and 99.97% accuracy on the Malimg and Microsoft datasets respectively.
DOI Link
ISBN
9781538636626
Publisher
Institute of Electrical and Electronics Engineers Inc.
Volume
2018-January
First Page
1
Last Page
5
Disciplines
Computer Sciences | Education
Keywords
convolutional neural networks, deep learning, Malware classification
Scopus ID
Recommended Citation
Kalash, Mahmoud; Rochan, Mrigank; Mohammed, Noman; Bruce, Neil D.B.; Wang, Yang; and Iqbal, Farkhund, "Malware Classification with Deep Convolutional Neural Networks" (2018). All Works. 2313.
https://zuscholars.zu.ac.ae/works/2313
Indexed in Scopus
yes
Open Access
no