A prudent based approach for compromised user credentials detection
ORCID Identifiers
Document Type
Article
Source of Publication
Cluster Computing
Publication Date
4-18-2017
Abstract
© Springer Science+Business Media New York 2018. Compromised user credential (CUC) is an activity in which someone, such as a thief, cyber-criminal or attacker gains access to your login credentials for the purpose of theft, fraud, or business disruption. It has become an alarming issue for various organizations. It is not only crucial for information technology (IT) oriented institutions using database management systems (DBMSs) but is also critical for competitive and sensitive organization where faulty data is more difficult to clean up. Various well-known risk mitigation techniques have been developed, such as authentication, authorization, and fraud detection. However, none of these methods are capable of efficiently detecting compromised legitimate users’ credentials. This is because cyber-criminals can gain access to legitimate users’ accounts based on trusted relationships with the account owner. This study focuses on handling CUC on time to avoid larger-scale damage incurred by the cyber-criminals. The proposed approach can efficiently detect CUC in a live database by analyzing and comparing the user’s current and past operational behavior. This novel approach is built by a combination of prudent analysis, ripple down rules and simulated experts. The experiments are carried out on collected data over 6 months from sensitive live DBMS. The results explore the performance of the proposed approach that it can efficiently detect CUC with 97% overall accuracy and 2.013% overall error rate. Moreover, it also provides useful information about compromised users’ activities for decision or policy makers as to which user is more critical and requires more consideration as compared to less crucial user based prevalence value.
DOI Link
ISSN
Publisher
Springer New York LLC
Volume
21
Issue
1
First Page
423
Last Page
441
Disciplines
Computer Sciences
Keywords
Compromised user credential, Outlier detection, Prudence analysis, Simulated experts
Scopus ID
Recommended Citation
Amin, Adnan; Shah, Babar; Anwar, Sajid; Al-Obeidat, Feras; Khattak, Asad Masood; and Adnan, Awais, "A prudent based approach for compromised user credentials detection" (2017). All Works. 232.
https://zuscholars.zu.ac.ae/works/232
Indexed in Scopus
yes
Open Access
no