Document Type
Conference Proceeding
Source of Publication
Procedia Computer Science
Publication Date
1-1-2016
Abstract
© 2016 The Authors. Social Networks are powerful social media for sharing information about various issues and can be used to raise awareness and collect pointers about associated risk factors and preventive measures in chronical disease like diabetes. Since the olden times, knowledge in medicine was established through recording and analysing human experiences. This paper presents the results of text mining techniques of more than five hundred thousands of texts retrieved from social networks, blogs, forums, and also research papers from MEDLINE database to discovering new knowledge related to diabetes disease covering symptoms and treatments. The text mining approach consists of two tasks, descriptive and predictive. The descriptive task was to identify explicit references to the diabetes diseases diagnosis and treatments, whereas the predictive task focused on the prediction of the diabetes disease status when the evidence was not explicitly asserted. The findings are then compared to the standard diabetes diagnosis and treatments and only those which are not listed in the standards are retained as hypothesis for further validation by clinicians and medical researchers in the domain of diabetic disease.
DOI Link
ISSN
Publisher
Elsevier B.V.
Volume
83
First Page
1256
Last Page
1261
Disciplines
Computer Sciences
Keywords
Diabetes, Research papers, Social Networks, Text Mining
Scopus ID
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Marir, Farhi; Said, Huwida; and Al-Obeidat, Feras, "Mining the Web and Literature to Discover New Knowledge about Diabetes" (2016). All Works. 2401.
https://zuscholars.zu.ac.ae/works/2401
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Gold: This publication is openly available in an open access journal/series