Document Type
Conference Proceeding
Source of Publication
Procedia Computer Science
Publication Date
1-1-2018
Abstract
© 2018 The Authors. Published by Elsevier B.V. Model predictive controllers use accurate temperature forecasts to save energy by optimally controlling heating, ventilation and air conditioning equipment while achieving comfort for occupants. In a "smart" building, i.e. one that is outfitted with sensors, temperature forecasts are computed from data gathered by these sensors. Recently, accurate temperature forecasts have been generated using relatively few observations from each sensor. However, long sensor histories are available in smart houses. In this paper we consider improving forecast accuracy by using up to 24 hours of quarter-hourly readings. In particular, we overcome forecast inaccuracy that arises from the "one standard error" heuristic (1SE) in lasso regression. When there are many historical observations, low variance in the error estimations can result in excessively high values for the lasso hyperparameter λ. We propose the midfel refinement of lasso regression, which adjusts λ based on the shape of the error curve, resulting in improved forecast accuracy. We illustrate its effect in a setting where lasso regression is used to select sensors based on forecast accuracy. In this setting, midfel lasso regression using many historical observations has two effects: its improves accuracy and uses fewer sensors. Thus it potentially reduces costs arising both from energy usage and from sensor installation.
DOI Link
ISSN
Publisher
Elsevier B.V.
Volume
130
First Page
728
Last Page
735
Disciplines
Computer Sciences
Keywords
Energy Efficiency, Feature Selection, Home Sensor Network, Internet of Things, Lasso regression, Model Predictive Control, Temperature Forecasting
Scopus ID
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Spencer, Bruce; Alfandi, Omar; and Al-Obeidat, Feras, "A Refinement of Lasso Regression Applied to Temperature Forecasting" (2018). All Works. 242.
https://zuscholars.zu.ac.ae/works/242
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Gold: This publication is openly available in an open access journal/series