NLH: A Blind Pixel-Level Non-Local Method for Real-World Image Denoising
Document Type
Article
Source of Publication
IEEE Transactions on Image Processing
Publication Date
1-1-2020
Abstract
© 1992-2012 IEEE. Non-local self similarity (NSS) is a powerful prior of natural images for image denoising. Most of existing denoising methods employ similar patches, which is a patch-level NSS prior. In this paper, we take one step forward by introducing a pixel-level NSS prior, i.e., searching similar pixels across a non-local region. This is motivated by the fact that finding closely similar pixels is more feasible than similar patches in natural images, which can be used to enhance image denoising performance. With the introduced pixel-level NSS prior, we propose an accurate noise level estimation method, and then develop a blind image denoising method based on the lifting Haar transform and Wiener filtering techniques. Experiments on benchmark datasets demonstrate that, the proposed method achieves much better performance than previous non-deep methods, and is still competitive with existing state-of-the-art deep learning based methods on real-world image denoising. The code is publicly available at https://github.com/njusthyk1972/NLH.
DOI Link
ISSN
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Volume
29
First Page
5121
Last Page
5135
Disciplines
Computer Sciences
Keywords
image denoising, Non-local self similarity, pixel-level similarity
Recommended Citation
Hou, Yingkun; Xu, Jun; Liu, Mingxia; Liu, Guanghai; Liu, Li; Zhu, Fan; and Shao, Ling, "NLH: A Blind Pixel-Level Non-Local Method for Real-World Image Denoising" (2020). All Works. 2511.
https://zuscholars.zu.ac.ae/works/2511
Indexed in Scopus
no
Open Access
yes
Open Access Type
Green: A manuscript of this publication is openly available in a repository