Document Type
Article
Source of Publication
Computing
Publication Date
5-1-2020
Abstract
© 2020, Springer-Verlag GmbH Austria, part of Springer Nature. Computing-intensive experiments in modern sciences have become increasingly data-driven illustrating perfectly the Big-Data era. These experiments are usually specified and enacted in the form of workflows that would need to manage (i.e., read, write, store, and retrieve) highly-sensitive data like persons’ medical records. We assume for this work that the operations that constitute a workflow are 1-to-1 operations, in the sense that for each input data record they produce a single data record. While there is an active research body on how to protect sensitive data by, for instance, anonymizing datasets, there is a limited number of approaches that would assist scientists with identifying the datasets, generated by the workflows, that need to be anonymized along with setting the anonymization degree that must be met. We present in this paper a solution privacy requirements of datasets used and generated by a workflow execution. We also present a technique for anonymizing workflow data given an anonymity degree.
DOI Link
ISSN
Publisher
Springer
Volume
102
Issue
5
First Page
1171
Last Page
1185
Disciplines
Computer Sciences | Medicine and Health Sciences
Keywords
e-Science, Privacy, Workflow
Scopus ID
Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.
Recommended Citation
Belhajjame, Khalid; Faci, Noura; Maamar, Zakaria; Burégio, Vanilson; Soares, Edvan; and Barhamgi, Mahmoud, "On privacy-aware eScience workflows" (2020). All Works. 2553.
https://zuscholars.zu.ac.ae/works/2553
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Green: A manuscript of this publication is openly available in a repository