On the Pilot Contamination Attack in Multi-Cell Multiuser Massive MIMO Networks
Document Type
Article
Source of Publication
IEEE Transactions on Communications
Publication Date
4-1-2020
Abstract
© 1972-2012 IEEE. In this paper, we analyze pilot contamination (PC) attacks on a multi-cell massive multiple-input multiple-output (MIMO) network with correlated pilots. We obtain correlated pilots using a user capacity-achieving pilot sequence design. This design relies on an algorithm which designs correlated pilot sequences based on signal-to-interference-plus-noise ratio (SINR) requirements for all the legitimate users. The pilot design is capable of achieving the SINR requirements for all users even in the presence of PC. However, this design has some intrinsic limitations and vulnerabilities, such as a known pilot sequence and the non-zero cross-correlation among different pilot sequences. We reveal that such vulnerabilities may be exploited by an active attacker to increase PC in the network. Motivated by this, we analyze the correlated pilot design for vulnerabilities that can be exploited by an active attacker. Based on this analysis, we develop an effective active attack strategy in the massive MIMO network with correlated pilot sequences. Our examinations reveal that the user capacity region of the network is significantly reduced in the presence of the active attack. Importantly, the SINR requirements for the worst-affected users may not be satisfied even with an infinite number of antennas at the base station.
DOI Link
ISSN
Publisher
Institute of Electrical and Electronics Engineers Inc.
Volume
68
Issue
4
First Page
2264
Last Page
2276
Disciplines
Computer Sciences
Keywords
active attack, correlated pilots, physical layer security, Pilot contamination
Scopus ID
Recommended Citation
Akbar, Noman; Yan, Shihao; Khattak, Asad Masood; and Yang, Nan, "On the Pilot Contamination Attack in Multi-Cell Multiuser Massive MIMO Networks" (2020). All Works. 2570.
https://zuscholars.zu.ac.ae/works/2570
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Green: A manuscript of this publication is openly available in a repository