On the Pilot Contamination Attack in Multi-Cell Multiuser Massive MIMO Networks

Document Type

Article

Source of Publication

IEEE Transactions on Communications

Publication Date

4-1-2020

Abstract

© 1972-2012 IEEE. In this paper, we analyze pilot contamination (PC) attacks on a multi-cell massive multiple-input multiple-output (MIMO) network with correlated pilots. We obtain correlated pilots using a user capacity-achieving pilot sequence design. This design relies on an algorithm which designs correlated pilot sequences based on signal-to-interference-plus-noise ratio (SINR) requirements for all the legitimate users. The pilot design is capable of achieving the SINR requirements for all users even in the presence of PC. However, this design has some intrinsic limitations and vulnerabilities, such as a known pilot sequence and the non-zero cross-correlation among different pilot sequences. We reveal that such vulnerabilities may be exploited by an active attacker to increase PC in the network. Motivated by this, we analyze the correlated pilot design for vulnerabilities that can be exploited by an active attacker. Based on this analysis, we develop an effective active attack strategy in the massive MIMO network with correlated pilot sequences. Our examinations reveal that the user capacity region of the network is significantly reduced in the presence of the active attack. Importantly, the SINR requirements for the worst-affected users may not be satisfied even with an infinite number of antennas at the base station.

ISSN

0090-6778

Publisher

Institute of Electrical and Electronics Engineers Inc.

Volume

68

Issue

4

First Page

2264

Last Page

2276

Disciplines

Computer Sciences

Keywords

active attack, correlated pilots, physical layer security, Pilot contamination

Scopus ID

85083743966

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Green: A manuscript of this publication is openly available in a repository

Share

COinS