PraNet: Parallel Reverse Attention Network for Polyp Segmentation

Document Type

Conference Proceeding

Source of Publication

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Publication Date

1-1-2020

Abstract

© 2020, Springer Nature Switzerland AG. Colonoscopy is an effective technique for detecting colorectal polyps, which are highly related to colorectal cancer. In clinical practice, segmenting polyps from colonoscopy images is of great importance since it provides valuable information for diagnosis and surgery. However, accurate polyp segmentation is a challenging task, for two major reasons: (i) the same type of polyps has a diversity of size, color and texture; and (ii) the boundary between a polyp and its surrounding mucosa is not sharp. To address these challenges, we propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images. Specifically, we first aggregate the features in high-level layers using a parallel partial decoder (PPD). Based on the combined feature, we then generate a global map as the initial guidance area for the following components. In addition, we mine the boundary cues using the reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues. Thanks to the recurrent cooperation mechanism between areas and boundaries, our PraNet is capable of calibrating some misaligned predictions, improving the segmentation accuracy. Quantitative and qualitative evaluations on five challenging datasets across six metrics show that our PraNet improves the segmentation accuracy significantly, and presents a number of advantages in terms of generalizability, and real-time segmentation efficiency (∼50 fps).

ISBN

9783030597245

ISSN

0302-9743

Publisher

Springer International Publishing

Volume

12266 LNCS

First Page

263

Last Page

273

Disciplines

Computer Sciences

Keywords

Colonoscopy, Colorectal cancer, Polyp segmentation

Indexed in Scopus

no

Open Access

yes

Open Access Type

Green: A manuscript of this publication is openly available in a repository

Share

COinS