Precise Cerebrovascular Segmentation
Document Type
Conference Proceeding
Source of Publication
Proceedings - International Conference on Image Processing, ICIP
Publication Date
10-1-2020
Abstract
© 2020 IEEE. Analyzing cerebrovascular changes using Time-of-Flight Magnetic Resonance Angiography (ToF-MRA) images can detect the presence of serious diseases and track their progress, e.g., hypertension. Such analysis requires accurate segmentation of the vasculature from the surroundings, which motivated us to propose a fully automated cerebral vasculature segmentation approach based on extracting both prior and current appearance features that capture the appearance of macro and micro-vessels. The appearance prior is modeled with a novel translation and rotation invariant Markov-Gibbs Random Field (MGRF) of voxel intensities with pairwise interaction analytically identified from a set of training data sets, while the current appearance is represented with a marginal probability distribution of voxel intensities by using a Linear Combination of Discrete Gaussians (LCDG) whose parameters are estimated by a modified Expectation-Maximization (EM) algorithm. The proposed approach was validated on 190 data sets using three metrics, which revealed high accuracy compared to existing approaches.
DOI Link
ISBN
9781728163956
ISSN
Publisher
IEEE
Volume
2020-October
First Page
394
Last Page
397
Disciplines
Medicine and Health Sciences
Keywords
and MGRF, Brain Vascular System, MRA
Scopus ID
Recommended Citation
Taher, F.; Soliman, A.; Kandil, H.; Mahmoud, A.; Shalaby, A.; Gimel'farb, G.; and El-Baz, A., "Precise Cerebrovascular Segmentation" (2020). All Works. 2747.
https://zuscholars.zu.ac.ae/works/2747
Indexed in Scopus
yes
Open Access
no