Revealing determinant factors for early breast cancer recurrence by decision tree
Document Type
Article
Source of Publication
Information Systems Frontiers
Publication Date
12-1-2017
Abstract
© 2017, Springer Science+Business Media New York. Early breast cancer recurrence is indicative of poor response to adjuvant therapy and poses threats to patients’ lives. Most existing prediction models for breast cancer recurrence are regression-based models and difficult to interpret. We apply a Decision Tree algorithm to the clinical information of a cohort of non-metastatic invasive breast cancer patients, to establish a classifier that categorizes patients based on whether they develop early recurrence and on similarities of their clinical and pathological diagnoses. The classifier predicts for whether a patient developed early disease recurrence; and is estimated to be about 70% accurate. For an independent validation cohort of 65 patients, the classifier predicts correctly for 55 patients. The classifier also groups patients based on intrinsic properties of their diseases; and for each subgroup lists the disease characteristics in a hierarchal order, according to their relevance to early relapse. Overall, it identifies pathological nodal stage, percentage of intra-tumor stroma and components of TGFβ-Smad signaling pathway as highly relevant factors for early breast cancer recurrence. Since most of the disease characteristics used by this classifier are results of standardized tests, routinely collected during breast cancer diagnosis, the classifier can easily be adopted in various research and clinical settings.
DOI Link
ISSN
Publisher
Springer New York LLC
Volume
19
Issue
6
First Page
1233
Last Page
1241
Disciplines
Computer Sciences
Keywords
Breast cancer, Classifier, Decision tree, Recurrence, Stroma, TGFβ
Scopus ID
Recommended Citation
Guo, Jimin; Fung, Benjamin C.M.; Iqbal, Farkhund; Kuppen, Peter J.K.; Tollenaar, Rob A.E.M.; Mesker, Wilma E.; and Lebrun, Jean Jacques, "Revealing determinant factors for early breast cancer recurrence by decision tree" (2017). All Works. 2962.
https://zuscholars.zu.ac.ae/works/2962
Indexed in Scopus
yes
Open Access
no