Document Type

Article

Source of Publication

Coatings

Publication Date

5-1-2019

Abstract

© 2019 by the authors. This study aims to scrutinize the thin film flow of a nanofluid comprising of carbon nanotubes (CNTs), single and multi-walled i.e., (SWCNTs and MWCNTs), with Cattaneo-Christov heat flux and entropy generation. The time-dependent flow is supported by thermal radiation, variable source/sink, and magneto hydrodynamics past a linearly stretched surface. The obtained system of equations is addressed by the numerical approach bvp4c of the MATLAB software. The presented results are validated by comparing them to an already conducted study and an excellent synchronization in both results is achieved. The repercussions of the arising parameters on the involved profiles are portrayed via graphical illustrations and numerically erected tables. It is seen that the axial velocity decreases as the value of film thickness parameter increases. It is further noticed that for both types of CNTs, the velocity and temperature distributions increase as the solid volume fraction escalates.

ISSN

2079-6412

Publisher

MDPI AG

Volume

9

Issue

5

Disciplines

Life Sciences

Keywords

Carbon nanotubes, Cattaneo-Christov heat flux, Entropy generation, Thin liquid film flow, Variable heat source/sink

Scopus ID

85065772637

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Included in

Life Sciences Commons

Share

COinS