Document Type
Article
Source of Publication
Coatings
Publication Date
5-1-2019
Abstract
© 2019 by the authors. This study aims to scrutinize the thin film flow of a nanofluid comprising of carbon nanotubes (CNTs), single and multi-walled i.e., (SWCNTs and MWCNTs), with Cattaneo-Christov heat flux and entropy generation. The time-dependent flow is supported by thermal radiation, variable source/sink, and magneto hydrodynamics past a linearly stretched surface. The obtained system of equations is addressed by the numerical approach bvp4c of the MATLAB software. The presented results are validated by comparing them to an already conducted study and an excellent synchronization in both results is achieved. The repercussions of the arising parameters on the involved profiles are portrayed via graphical illustrations and numerically erected tables. It is seen that the axial velocity decreases as the value of film thickness parameter increases. It is further noticed that for both types of CNTs, the velocity and temperature distributions increase as the solid volume fraction escalates.
DOI Link
ISSN
Publisher
MDPI AG
Volume
9
Issue
5
Disciplines
Life Sciences
Keywords
Carbon nanotubes, Cattaneo-Christov heat flux, Entropy generation, Thin liquid film flow, Variable heat source/sink
Scopus ID
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Lu, Dianchen; Ramzan, Muhammad; Mohammad, Mutaz; Howari, Fares; and Chung, Jae Dong, "A thin film flow of nanofluid comprising carbon nanotubes influenced by Cattaneo-Christov heat flux and entropy generation" (2019). All Works. 300.
https://zuscholars.zu.ac.ae/works/300
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Gold: This publication is openly available in an open access journal/series