Socialized healthcare service recommendation using deep learning
ORCID Identifiers
Document Type
Article
Source of Publication
Neural Computing and Applications
Publication Date
10-1-2018
Abstract
© 2018, The Natural Computing Applications Forum. Socialized recommender system recommends reliable healthcare services for users. Ratings are predicted on the healthcare services by merging recommendations given by users who has social relations with the active users. However, existing works did not consider the influence of distrust between users. They recommend items only based on the trust relations between users. We therefore propose a novel deep learning-based socialized healthcare service recommender model, which recommends healthcare services with recommendations given by recommenders with both trust relations and distrust relations with the active users. The influences of recommenders, considering both the node information and the structure information, are merged via the deep learning model. Experimental results show that the proposed model outperforms the existing works on prediction accuracy and prediction coverage simultaneously, even for cold start users or users with very sparse trust relations. It is also computational less expensive.
DOI Link
ISSN
Publisher
Springer London
Volume
30
Issue
7
First Page
2071
Last Page
2082
Disciplines
Computer Sciences
Keywords
Deep learning, Healthcare service, Service recommendation, Socialized recommendation
Scopus ID
Recommended Citation
Yuan, Weiwei; Li, Chenliang; Guan, Donghai; Han, Guangjie; and Khattak, Asad Masood, "Socialized healthcare service recommendation using deep learning" (2018). All Works. 3147.
https://zuscholars.zu.ac.ae/works/3147
Indexed in Scopus
yes
Open Access
no