Synergistic effects of activated carbon and nano-zerovalent copper on the performance of hydroxyapatite-alginate beads for the removal of As3+ from aqueous solution
Document Type
Article
Source of Publication
Journal of Cleaner Production
Publication Date
10-20-2019
Abstract
© 2019 Elsevier Ltd In this study, activated carbon (AC) and nano-zerovalent copper (nZVCu) functionalized hydroxyapatite (HA) and alginate beads were synthesized and used for the removal of As3+ from aqueous solution. The characterization by X-ray diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, high resolution transmission electron microscopy, BET surface area analysis, thermogravimetric analysis, and Fourier transform infrared spectroscopy revealed successful formation of the AC/nZVCu/HA-alginate, nZVCu/HA-alginate, AC/HA-alginate, and HA-alginate beads. The scanning electron microscopy and surface analysis revealed the prepared beads to be highly mesoporous which led to the maximum adsorption of As3+, i.e., 13.97, 29.33, 30.96, and 39.06 mg/g by HA-alginate, AC/HA-alginate, nZVCu/HA-alginate, and AC/nZVCu/HA-alginate beads, respectively. The thermogravimteric analysis showed the nZVCu/HA-alginate beads to be highly stable while the AC composite beads as the least stable to heat treatment. The HA-alginate beads achieved 39% removal of As3+, however, removal efficiency was promoted to 95% by coupling AC and nZVCu with HA-alginate beads at a reaction time of 120 min. The removal of As3+ by the prepared AC & nZVCu coupled HA-alginate beads was promoted with increasing [As3+]0 and [AC/nZVCu/HA-alginate]0. The pH of aqueous solution significantly influenced the removal of As3+ by AC/nZVCu/HA-alginate beads and maximum removal was achieved at pH 5.8. Freundlich adsorption isotherm and pseudo-second-order kinetic models were found to best fit the removal of As3+ by the synthesized beads. The high performance of AC/nZVCu/HA-alginate beads in the removal of As3+ even after seven cyclic treatment as well as least leaching of Cu ions into aqueous solution suggest enhanced reusability and stability of HA-alginate beads by coupling with AC and nZVCu. The results suggest that the synthesized beads have good potential for the removal of As3+ from aqueous solutions.
DOI Link
ISSN
Publisher
Elsevier Ltd
Volume
235
First Page
875
Last Page
886
Disciplines
Life Sciences
Keywords
Activated carbon, As 3+, Hydroxyapatite-alginate beads, Nano-zerovalent copper, Water treatment
Scopus ID
Recommended Citation
Iqbal, Jibran; Shah, Noor S.; Sayed, Murtaza; Imran, Muhammad; Muhammad, Nawshad; Howari, Fares M.; Alkhoori, Sara A.; Khan, Javed Ali; Haq Khan, Zia Ul; Bhatnagar, Amit; Polychronopoulou, Kyriaki; Ismail, Issam; and Haija, Mohammad Abu, "Synergistic effects of activated carbon and nano-zerovalent copper on the performance of hydroxyapatite-alginate beads for the removal of As3+ from aqueous solution" (2019). All Works. 3273.
https://zuscholars.zu.ac.ae/works/3273
Indexed in Scopus
yes
Open Access
no