Using Data Mining Techniques to Identify Construction Claims Causes: A Case Study
Document Type
Conference Proceeding
Source of Publication
2019 International Conference on Electrical and Computing Technologies and Applications, ICECTA 2019
Publication Date
11-1-2019
Abstract
© 2019 IEEE. The construction industry is a complex, multifaceted sector that is characterized by a high level of claims. Several studies have aimed to examine claims in the construction industry and the associated cases. However, the existing studies in this domain have been employed conventional statistical analysis. The research described in this paper exploited data mining techniques to accurately predict and rank the causes of construction claims. Data based on the studies of Zaneldin 2006 and 2018 studies were used to predict the ability of feature selection techniques to rank the causes of claims. Various feature selection techniques were applied, and the overlap in the ranked causes was compared with those identified in the previous studies.
DOI Link
ISBN
9781728155326
Publisher
Institute of Electrical and Electronics Engineers Inc.
Disciplines
Computer Sciences
Keywords
Classification, Construction Claims, Data Mining, Feature Selection
Scopus ID
Recommended Citation
Al Khaldi, Vasila; Zaki, Nazar; Zaneldin, Essam; and Mohamed, Elfadil A., "Using Data Mining Techniques to Identify Construction Claims Causes: A Case Study" (2019). All Works. 3861.
https://zuscholars.zu.ac.ae/works/3861
Indexed in Scopus
yes
Open Access
no