Document Type
Article
Source of Publication
Computers, Materials and Continua
Publication Date
3-22-2021
Abstract
Load forecasting has received crucial research attention to reduce peak load and contribute to the stability of power grid using machine learning or deep learning models. Especially, we need the adequate model to forecast the maximum load duration based on time-of-use, which is the electricity usage fare policy in order to achieve the goals such as peak load reduction in a power grid. However, the existing single machine learning or deep learning forecasting cannot easily avoid overfitting. Moreover, a majority of the ensemble or hybrid models do not achieve optimal results for forecasting the maximum load duration based on time-of-use. To overcome these limitations, we propose a hybrid deep learning architecture to forecast maximum load duration based on time-of-use. Experimental results indicate that this architecture could achieve the highest average of recall and accuracy (83.43%) compared to benchmarkmodels. To verify the effectiveness of the architecture, another experimental result shows that energy storage system (ESS) scheme in accordance with the forecast results of the proposed model (LSTM-MATO) in the architecture could provide peak load cost savings of 17,535,700KRWeach year comparing with original peak load costs without the method. Therefore, the proposed architecture could be utilized for practical applications such as peak load reduction in the grid.
DOI Link
ISSN
Publisher
Computers, Materials and Continua (Tech Science Press)
Volume
68
First Page
283
Last Page
301
Disciplines
Computer Sciences
Keywords
deep learning, hybrid architecture, Load forecasting, maximum load duration, time-of-use
Scopus ID
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Kim, Jinseok; Shah, Babar; and Kim, Ki Il, "Hybrid Deep Learning Architecture to Forecast Maximum Load Duration Using Time-of-Use Pricing Plans" (2021). All Works. 4126.
https://zuscholars.zu.ac.ae/works/4126
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Gold: This publication is openly available in an open access journal/series