Document Type

Article

Source of Publication

Journal of Communications Software and Systems

Publication Date

1-1-2021

Abstract

Smart city analytics requires the harnessing and analysis of emotions and sentiments conveyed by images and video footage. In recent years, facial sentiment analysis attracted significant attention for different application areas, including marketing, gaming, political analytics, healthcare, and human computer interaction. Aiming at contributing to this area, we propose a deep learning model enabling the accurate emotion analysis of crowded scenes containing complete and partially occluded faces, with different angles, various distances from the camera, and varying resolutions. Our model consists of a sophisticated convolutional neural network (CNN) that is combined with pooling, densifying, flattening, and Softmax layers to achieve accurate sentiment and emotion analysis of facial images. The proposed model was successfully tested using 3,750 images containing 22,563 faces, collected from a large consumer electronics trade show. The model was able to correctly classify the test images which contained faces with different angles, distances, occlusion areas, facial orientation and resolutions. It achieved an average accuracy of 90.6% when distinguishing between seven emotions (Happiness, smiling, laughter, neutral, sadness, anger, and surprise) in complete faces, and 86.16% accuracy in partially occluded faces. Such model can be leveraged for the automatic analysis of attendees’ engagement level in events. Furthermore, it can open the door for many useful applications in smart cities, such as measuring employees’ satisfaction and citizens’ happiness.

Publisher

Croatian Communications and Information Society

Volume

17

Issue

2

First Page

106

Last Page

115

Disciplines

Computer Sciences

Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Indexed in Scopus

no

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS