Securing Critical IoT Infrastructures with Blockchain-Supported Federated Learning

Document Type

Article

Source of Publication

IEEE Internet of Things Journal

Publication Date

6-9-2021

Abstract

Network trustworthiness is considered a very crucial element in network security and is developed through positive experiences, guarantees, clarity and responsibility. Trustworthiness becomes even more compelling with the ever-expanding set of Internet of Things (IoT) smart city services and applications. Most of today;s network trustworthy solutions are considered inadequate, notably for critical applications where IoT devices may be exposed and easily compromised. In this article, we propose an adaptive framework that integrates both federated learning and blockchain to achieve both network trustworthiness and security. The solution is capable of dealing with individuals’ trust as a probability and estimates the end-devices’ trust values belonging to different networks subject to achieving security criteria. We evaluate and verify the proposed model through simulation to showcase the effectiveness of the framework in terms of network lifetime, energy consumption, and trust using multiple factors. Results show that the proposed model maintains high accuracy and detection rates with values of ≈0.93 and ≈0.96, respectively.

ISSN

2327-4662

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Disciplines

Computer Sciences

Keywords

Blockchain, Collaborative work, Security, Training, Computational modeling, Adaptation models, Data models

Scopus ID

85111065450

Indexed in Scopus

yes

Open Access

no

Share

COinS