Dependence measure for length-biased survival data using kernel density estimation with a regression procedure
Document Type
Article
Source of Publication
Journal of Statistical Computation and Simulation
Publication Date
6-17-2021
Abstract
In statistical literature, several dependence measures have been extensively established and treated, including Pearson's correlation coefficient, Spearman's ρ and Kendall's τ. In the context of survival analysis with length-biased data, a measure of dependence between survival time and covariates appears to have not received much intention in the literature. The purpose of this paper is to extend Kent's [Information gain and a general measure of correlation. Biometrika. 1983;70(1):163–173.] dependence measure, based on the concept of information gain, to length-biased survival data. Specifically, we develop a new approach to measure the degree of dependence between survival time and several continuous covariates, without censoring, when the relationship is linear. In this regard, kernel density estimation with a regression procedure is proposed. The consistency for all proposed estimators is established. In particular, the performance of the dependence measure for length-biased data is investigated by means of simulations studies.
DOI Link
ISSN
Publisher
Taylor & Francis
Disciplines
Physical Sciences and Mathematics
Keywords
Information gain, Correlation, Dependence, Length-biased distribution, Kernel smoothing, Regression
Scopus ID
Recommended Citation
Bentoumi, Rachid; Alvo, Mayer; and Mesfioui, Mhamed, "Dependence measure for length-biased survival data using kernel density estimation with a regression procedure" (2021). All Works. 4341.
https://zuscholars.zu.ac.ae/works/4341
Indexed in Scopus
yes
Open Access
no