Document Type

Article

Source of Publication

Applied Sciences

Publication Date

6-23-2021

Abstract

Cloud computing is a rapidly growing technology that has been implemented in various fields in recent years, such as business, research, industry, and computing. Cloud computing provides different services over the internet, thus eliminating the need for personalized hardware and other resources. Cloud computing environments face some challenges in terms of resource utilization, energy efficiency, heterogeneous resources, etc. Tasks scheduling and virtual machines (VMs) are used as consolidation techniques in order to tackle these issues. Tasks scheduling has been extensively studied in the literature. The problem has been studied with different parameters and objectives. In this article, we address the problem of energy consumption and efficient resource utilization in virtualized cloud data centers. The proposed algorithm is based on task classification and thresholds for efficient scheduling and better resource utilization. In the first phase, workflow tasks are pre-processed to avoid bottlenecks by placing tasks with more dependencies and long execution times in separate queues. In the next step, tasks are classified based on the intensities of the required resources. Finally, Particle Swarm Optimization (PSO) is used to select the best schedules. Experiments were performed to validate the proposed technique. Comparative results obtained on benchmark datasets are presented. The results show the effectiveness of the proposed algorithm over that of the other algorithms to which it was compared in terms of energy consumption, makespan, and load balancing.

ISSN

2076-3417

Publisher

MDPI

Volume

11

Issue

13

Disciplines

Physical Sciences and Mathematics

Keywords

Cloud computing, Energy consumption, Task scheduling, Load balancing, Makespan, PSO

Scopus ID

85109127901

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS