Document Type
Article
Source of Publication
Computers, Materials and Continua
Publication Date
1-1-2021
Abstract
The Internet of Things (IoT) is the fourth technological revolution in the global information industry after computers, the Internet, and mobile communication networks. It combines radio-frequency identification devices, infrared sensors, global positioning systems, and various other technologies. Information sensing equipment is connected via the Internet, thus forming a vast network. When these physical devices are connected to the Internet, the user terminal can be extended and expanded to exchange information, communicate with anything, and carry out identification, positioning, tracking, monitoring, and triggering of corresponding events on each device in the network. In real life, the IoT has a wide range of applications, covering many fields, such as smart homes, smart logistics, fine agriculture and animal husbandry, national defense, and military. One of the most significant factors in wireless channels is interference, which degrades the system performance. Although the existing QR decomposition-based signal detection method is an emerging topic because of its low complexity, it does not solve the problem of poor detection performance. Therefore, this study proposes a maximum-likelihood-based QR decomposition algorithm. The main idea is to estimate the initial level of detection using the maximum likelihood principle, and then the other layer is detected using a reliable decision. The optimal candidate is selected from the feedback by deploying the candidate points in an unreliable scenario. Simulation results show that the proposed algorithm effectively reduces the interference and propagation error compared with the algorithms reported in the literature.
DOI Link
ISSN
Publisher
Computers, Materials and Continua (Tech Science Press)
Volume
69
Issue
3
First Page
3889
Last Page
3902
Disciplines
Electrical and Computer Engineering
Keywords
6G networks, Internet of things, Optimization, Resource allocation
Scopus ID
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Al-Wesabi, Fahd N.; Khan, Imran; Nemri, Nadhem; Al-Hagery, Mohammed A.; Iskander, Huda G.; Nguyen, Quang Ngoc; Shah, Babar; and Kim, Ki Il, "An efficient scheme for interference mitigation in 6G-IoT wireless networks" (2021). All Works. 4482.
https://zuscholars.zu.ac.ae/works/4482
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Gold: This publication is openly available in an open access journal/series