Document Type
Article
Source of Publication
Computers, Materials and Continua
Publication Date
1-1-2022
Abstract
Airline industry has witnessed a tremendous growth in the recent past. Percentage of people choosing air travel as first choice to commute is continuously increasing. Highly demanding and congested air routes are resulting in inadvertent delays, additional fuel consumption and high emission of greenhouse gases. Trajectory planning involves creation identification of cost-effective flight plans for optimal utilization of fuel and time. This situation warrants the need of an intelligent system for dynamic planning of optimized flight trajectories with least human intervention required. In this paper, an algorithm for dynamic planning of optimized flight trajectories has been proposed. The proposed algorithm divides the airspace into four dimensional cubes and calculate a dynamic score for each cube to cumulatively represent estimated weather, aerodynamic drag and air traffic within that virtual cube. There are several constraints like simultaneous flight separation rules, weather conditions like air temperature, pressure, humidity, wind speed and direction that pose a real challenge for calculating optimal flight trajectories. To validate the proposed methodology, a case analysis was undertaken within Indian airspace. The flight routes were simulated for four different air routes within Indian airspace. The experiment results observed a seven percent reduction in drag values on the predicted path, hence indicates reduction in carbon footprint and better fuel economy.
DOI Link
ISSN
Publisher
Computers, Materials and Continua (Tech Science Press)
Volume
70
Issue
3
First Page
6189
Last Page
6204
Disciplines
Computer Sciences
Keywords
Airplane trajectory, Coefficient of drag, Four-dimensional trajectory prediction, Machine learning, Route planning, Stochastic processes
Scopus ID
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Singh, Jaiteg; Goyal, Gaurav; Ali, Farman; Shah, Babar; and Pack, Sangheon, "Estimating fuel-efficient air plane trajectories using machine learning" (2022). All Works. 4622.
https://zuscholars.zu.ac.ae/works/4622
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Hybrid: This publication is openly available in a subscription-based journal/series