ORCID Identifiers

0000-0001-8369-5271

Document Type

Article

Source of Publication

Microbes and Infection

Publication Date

12-22-2021

Abstract

Cationic antimicrobial peptides (CAMPs) are important actors in host innate immunity and represent a promising alternative to combat antibiotic resistance. Here, the bactericidal activity of two CAMPs (LL-37, and CAMA) was evaluated against Pseudomonas aeruginosa (PA) in the presence of IB3-1 cells, a cell line derived from patients with cystic fibrosis. The two CAMPs exerted different effects on PA survival depending on the timing of their administration. We observed a greater bactericidal effect when IB3-1 cells were pretreated with sub-minimum bactericidal concentrations (Sub-MBCs) of the CAMPs prior to infection. These findings suggest that CAMPs induce the production of factors by IB3-1 cells that improve their bactericidal action. However, we observed no bactericidal effect when supra-minimum bactericidal concentrations (Supra-MBCs) of the CAMPs were added to IB3-1 cells at the same time or after infection. Western-blot analysis showed a large decrease in LL-37 levels in supernatants of infected IB3-1 cells and an increase in LL-37 binding to these cells after LL-37 administration. LL-37 induced a weak inflammatory response in the cells without being toxic. In conclusion, our findings suggest a potential prophylactic action of CAMPs. The bactericidal effects were low when the CAMPs were added after cell infection, likely due to degradation of CAMPs by bacterial or epithelial cell proteases and/or due to adherence of CAMPs to cells becoming less available for direct bacterial killing.

ISSN

1286-4579

Publisher

Elsevier

Disciplines

Life Sciences

Keywords

cationic antimicrobial peptides, human lung epithelial cell lines, Pseudomonas aeruginosa, bactericidal activity, immunomodulatory activity

Scopus ID

85129009878

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Hybrid: This publication is openly available in a subscription-based journal/series

Included in

Life Sciences Commons

Share

COinS