Document Type

Article

Source of Publication

Remote Sensing

Publication Date

2-1-2022

Abstract

Lunar floor‐fractured craters (FFCs) are a distinguished type of crater found on the surface of the Moon with radial, concentric, and/or polygonal fractures. In the present study, we selected the Posidonius FCC to explore the mineralogy, morphology and tectonic characteristics using remote sensing datasets. The Posidonius crater is vested with a wide moat of lava separating the crater rim inner wall terraces from the fractured central floor. Lunar Reconnaissance Orbiter’s (LRO) images and Digital Elevation Model (DEM) data were used to map the tectonics and morphology of the present study. The Moon Mineralogy Mapper (M3) data of Chandrayaan‐1 were used to inves-tigate the mineralogy of the region through specified techniques such as integrated band depth, band composite and spectral characterization. The detailed mineralogical analysis indicates the nor-itic‐rich materials in one massif among four central peak rings and confirm intrusion (mafic pluton). Spectral analysis from the fresh crater of the Posidonius moat mare unit indicates clinopyroxene pigeonite in nature. Integrated studies of the mineralogy, morphology and tectonics revealed that the study region belongs to the Class‐III category of FFCs. The lithospheric loading by adjacent volcanic load (Serenitatis basin) generates a stress state and distribution of the fracture system.

ISSN

2072-4292

Publisher

MDPI AG

Volume

14

Issue

4

Disciplines

Earth Sciences

Keywords

Floor fractured crater, Lunar, Lunar morphology, Mineralogy, Posidonius impact crater, Spectral analysis

Scopus ID

85124554317

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS