Document Type

Article

Source of Publication

Sensors

Publication Date

3-1-2022

Abstract

Advancements in IoT technology have been instrumental in the design and implementation of various ubiquitous services. One such design activity was carried out by the authors of this paper, who proposed a novel cloud-centric IoT-based disaster management framework and developed a multimedia-based prototype that employed real-time geographical maps. The multimediabased system can provide vital information on maps that can improve the planning and execution of evacuation tasks. This study was intended to explore the acceptance of the proposed technology by the specific set of users that could potentially lead to its adoption by rescue agencies for carrying out indoor rescue and evacuation operations. The novelty of this study lies in the concept that the acceptability of the proposed system was ascertained before the complete implementation of the system, which prevented potential losses of time and other resources. Based on the extended Technology Acceptance Model (TAM), we proposed a model included factors such as perceived usefulness, perceived ease of use, attitude, and behavioural intention. Other factors include trust in the proposed system, job relevance, and information requirement characteristics. Online survey data collected from the respondents were analyzed using structural equation modelling (SEM) revealed that although perceived ease of use and job relevance had significant impacts on perceived usefulness, trust had a somewhat milder impact on the same. The model also demonstrated a statistically moderate impact of trust and perceived ease of use on behavioural intention. All other relationships were statistically strong. Overall, all proposed relationships were supported, with the research model providing a better understanding of the perceptions of users towards the adoption of the proposed technology. This would be particularly useful while making decisions regarding the inclusion of various features during the industrial production of the proposed system.

ISSN

1424-8220

Publisher

MDPI AG

Volume

22

Issue

5

Disciplines

Computer Sciences

Keywords

Indoor disaster management, Internet of Things, IoT framework, Technology Acceptance Model

Scopus ID

85125176046

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS