Analysis of symbolic models of biometric data and their use for action and user identification
Document Type
Conference Proceeding
Source of Publication
2018 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2018
Publication Date
7-5-2018
Abstract
© 2018 IEEE. Smart devices are becoming an extension of our- selves that contain sensitive information and are often targeted for theft. The development of an intelligent and reliable means of user identification and authentication is critical. Not only can the development of user models performing tasks be used for user and task identification, but systems can also notify individuals if there is a potential health concern. The construction of an idealized model of human locomotion may give medical care providers a better understanding of individual differences and guide therapy and treatment. Data was gathered from a smartwatch worn by six subjects performing five different tasks and Genetic Programming was used to perform symbolic regression - a model free, nonlinear type of regression analysis. Symbolic regression was applied to smartwatch data and a collection of nonlinear closed form symbolic mathematical models were generated. Not only did these models fit the data well, but they provided insight into the underlying system. With only 5 seconds of unseen data, the models could classify which subjects were performing which task with 83.9% accuracy when chance was only 3.33%.
DOI Link
ISBN
9781538613993
Publisher
Institute of Electrical and Electronics Engineers Inc.
First Page
1
Last Page
8
Disciplines
Computer Sciences
Keywords
Biomechanics, Gait recognition, Genetic Pro-gramming, Identifi-cation, Kinetics, Smartwatch, Symbolic regression
Scopus ID
Recommended Citation
Hughes, James Alexander; Brown, Joseph Alexander; Khan, Adil Mehmood; Khattak, Asad Masood; and Daley, Mark, "Analysis of symbolic models of biometric data and their use for action and user identification" (2018). All Works. 492.
https://zuscholars.zu.ac.ae/works/492
Indexed in Scopus
yes
Open Access
no