Document Type
Article
Source of Publication
Diagnostics
Publication Date
3-17-2022
Abstract
A skin lesion is a portion of skin that observes abnormal growth compared to other areas of the skin. The ISIC 2018 lesion dataset has seven classes. A miniature dataset version of it is also available with only two classes: malignant and benign. Malignant tumors are tumors that are cancerous, and benign tumors are non-cancerous. Malignant tumors have the ability to multiply and spread throughout the body at a much faster rate. The early detection of the cancerous skin lesion is crucial for the survival of the patient. Deep learning models and machine learning models play an essential role in the detection of skin lesions. Still, due to image occlusions and imbalanced datasets, the accuracies have been compromised so far. In this paper, we introduce an interpretable method for the non-invasive diagnosis of melanoma skin cancer using deep learning and ensemble stacking of machine learning models. The dataset used to train the classifier models contains balanced images of benign and malignant skin moles. Hand-crafted features are used to train the base models (logistic regression, SVM, random forest, KNN, and gradient boosting machine) of machine learning. The prediction of these base models was used to train level one model stacking using cross-validation on the training set. Deep learning models (MobileNet, Xception, ResNet50, ResNet50V2, and DenseNet121) were used for transfer learning, and were already pre-trained on ImageNet data. The classifier was evaluated for each model. The deep learning models were then ensembled with different combinations of models and assessed. Furthermore, shapely adaptive explanations are used to construct an interpretability approach that generates heatmaps to identify the parts of an image that are most suggestive of the illness. This allows dermatologists to understand the results of our model in a way that makes sense to them. For evaluation, we calculated the accuracy, F1-score, Cohen's kappa, confusion matrix, and ROC curves and identified the best model for classifying skin lesions.
DOI Link
Publisher
MDPI AG
Volume
12
Issue
3
First Page
726
Last Page
726
Disciplines
Computer Sciences | Medicine and Health Sciences
Keywords
Loneliness, Anxiety, Sleep quality, COVID-19
Scopus ID
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Alfi, Iftiaz A.; Rahman, Mahfuzur; Shorfuzzaman, Mohammad; and Nazir, Amril, "A Non-Invasive Interpretable Diagnosis of Melanoma Skin Cancer Using Deep Learning and Ensemble Stacking of Machine Learning Models" (2022). All Works. 4970.
https://zuscholars.zu.ac.ae/works/4970
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Gold: This publication is openly available in an open access journal/series