Applying deep neural networks for user intention identification

ORCID Identifiers

0000-0003-3320-2074

Document Type

Article

Source of Publication

Soft Computing

Publication Date

1-1-2020

Abstract

© 2020, Springer-Verlag GmbH Germany, part of Springer Nature. The social media revolution has provided the online community an opportunity and facility to communicate their views, opinions and intentions about events, policies, services and products. The intent identification aims at detecting intents from user reviews, i.e., whether a given user review contains intention or not. The intent identification, also called intent mining, assists business organizations in identifying user’s purchase intentions. The prior works have focused on using only the CNN model to perform the feature extraction without retaining the sequence correlation. Moreover, many recent studies have applied classical feature representation techniques followed by a machine learning classifier. We examine the intention review identification problem using a deep learning model with an emphasis on maintaining the sequence correlation and also to retain information for a long time span. The proposed method consists of the convolutional neural network along with long short-term memory for efficient detection of intention in a given review, i.e., whether the review is an intent vs non-intent. The experimental results depict that the performance of the proposed system is better with respect to the baseline techniques with an accuracy of 92% for Dataset1 and 94% for Dataset2. Moreover, statistical analysis also depicts the effectiveness of the proposed method with respect to the comparing methods.

ISSN

1432-7643

Publisher

Springer

Last Page

30

Disciplines

Computer Sciences

Keywords

CNN, Deep learning, Intention identification, Intention mining, LSTM, Product reviews, Social media services

Scopus ID

85090299978

Indexed in Scopus

yes

Open Access

no

Share

COinS