Document Type

Article

Source of Publication

Journal of Inflammation Research

Publication Date

1-1-2022

Abstract

Introduction: Several studies revealed that alcohol utilization impairs memory in adults; however, the underlying mechanism is still unclear. The production of inflammatory markers and reactive oxygen species (ROS) plays a major role in neurodegeneration, which leads to memory impairment. Therefore, targeting neuroinflammation and oxidative distress could be a useful strategy for abrogating the hallmarks of ethanol-induced neurodegeneration. Moreover, several studies have demonstrated multiple biological activities of thiazolidine derivatives including neuroprotection. Methods: In the current study, we synthesized ten (10) new thiazolidine-4-carboxylic acid derivatives (P1-P10), characterized their synthetic properties using proton nuclear magnetic resonance (1 H-NMR) and carbon-13 NMR, and further investigated the neuropro-tective potential of these compounds in an ethanol-induced neuroinflammation model. Results: Our results suggested altered levels of antioxidant enzymes associated with an elevated level of tumor necrosis factor-alpha (TNF-α), nuclear factor-κB (p-NF-κB), pyrin domain-containing protein 3 (NLRP3), and cyclooxygenase-2 (COX-2) in ethanol-treated animals. Ethanol treatment also led to memory impairment in rats, as assessed by behavioral tests. To further support our notion, we performed molecular docking studies, and all synthetic compounds exhibited a good binding affinity with a fair bond formation with selected targets (NF-κB, TLR4, NLRP3, and COX-2). Discussion: Overall, our results revealed that these derivatives may be beneficial in reducing neuroinflammation by acting on different stages of inflammation. Moreover, P8 and P9 treatment attenuated the neuroinflammation, oxidative stress, and memory impairment caused by ethanol.

ISSN

1178-7031

Publisher

Informa UK Limited

Volume

15

First Page

3643

Last Page

3660

Disciplines

Medicine and Health Sciences

Keywords

ethanol, molecular docking, neuroinflammation, neuroprotective, oxidative stress, thiazolidine

Scopus ID

85133427074

Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS