Document Type

Article

Source of Publication

Sustainability

Publication Date

7-19-2022

Abstract

The autonomous landing of an unmanned aerial vehicle (UAV) on a moving platform is an essential functionality in various UAV-based applications. It can be added to a teleoperation UAV system or part of an autonomous UAV control system. Various robust and predictive control systems based on the traditional control theory are used for operating a UAV. Recently, some attempts were made to land a UAV on a moving target using reinforcement learning (RL). Vision is used as a typical way of sensing and detecting the moving target. Mainly, the related works have deployed a deep-neural network (DNN) for RL, which takes the image as input and provides the optimal navigation action as output. However, the delay of the multi-layer topology of the deep neural network affects the real-time aspect of such control. This paper proposes an adaptive multi-level quantization-based reinforcement learning (AMLQ) model. The AMLQ model quantizes the continuous actions and states to directly incorporate simple Q-learning to resolve the delay issue. This solution makes the training faster and enables simple knowledge representation without needing the DNN. For evaluation, the AMLQ model was compared with state-of-art approaches and was found to be superior in terms of root mean square error (RMSE), which was 8.7052 compared with the proportional-integral-derivative (PID) controller, which achieved an RMSE of 10.0592.

ISSN

2071-1050

Publisher

MDPI AG

Volume

14

Issue

14

Disciplines

Computer Sciences

Keywords

unmanned aerial vehicle (UAV), autonomous landing, deep-neural network, reinforcement learning, multi-level quantization, Q-learning

Scopus ID

85137179259

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS