Document Type

Article

Source of Publication

Sensors

Publication Date

9-8-2022

Abstract

With the wide application of advanced communication and information technology, false data injection attack (FDIA) has become one of the significant potential threats to the security of smart grid. Malicious attack detection is the primary task of defense. Therefore, this paper proposes a method of FDIA detection based on vector auto-regression (VAR), aiming to improve safe operation and reliable power supply in smart grid applications. The proposed method is characterized by incorporating with VAR model and measurement residual analysis based on infinite norm and 2-norm to achieve the FDIA detection under the edge computing architecture, where the VAR model is used to make a short-term prediction of FDIA, and the infinite norm and 2-norm are utilized to generate the classification detector. To assess the performance of the proposed method, we conducted experiments by the IEEE 14-bus system power grid model. The experimental results demonstrate that the method based on VAR model has a better detection of FDIA compared to the method based on auto-regressive (AR) model.

ISSN

1424-8220

Publisher

MDPI AG

Volume

22

Issue

18

First Page

6789

Last Page

6789

Disciplines

Computer Sciences

Keywords

False data injection attack (FDIA), Vector auto-regression (VAR), Attack detection, Smart grid

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

no

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS