Document Type
Article
Source of Publication
Computational Intelligence and Neuroscience
Publication Date
9-29-2022
Abstract
Diabetes is a chronic disease that can cause several forms of chronic damage to the human body, including heart problems, kidney failure, depression, eye damage, and nerve damage. There are several risk factors involved in causing this disease, with some of the most common being obesity, age, insulin resistance, and hypertension. Therefore, early detection of these risk factors is vital in helping patients reverse diabetes from the early stage to live healthy lives. Machine learning (ML) is a useful tool that can easily detect diabetes from several risk factors and, based on the findings, provide a decision-based model that can help in diagnosing the disease. This study aims to detect the risk factors of diabetes using ML methods and to provide a decision support system for medical practitioners that can help them in diagnosing diabetes. Moreover, besides various other preprocessing steps, this study has used the synthetic minority over-sampling technique integrated with the edited nearest neighbor (SMOTE-ENN) method for balancing the BRFSS dataset. The SMOTE-ENN is a more powerful method than the individual SMOTE method. Several ML methods were applied to the processed BRFSS dataset and built prediction models for detecting the risk factors that can help in diagnosing diabetes patients in the early stage. The prediction models were evaluated using various measures that show the high performance of the models. The experimental results show the reliability of the proposed models, demonstrating that k-nearest neighbor (KNN) outperformed other methods with an accuracy of 98.38%, sensitivity, specificity, and ROC/AUC score of 98%. Moreover, compared with the existing state-of-the-art methods, the results confirm the efficacy of the proposed models in terms of accuracy and other evaluation measures. The use of SMOTE-ENN is more beneficial for balancing the dataset to build more accurate prediction models. This was the main reason it was possible to achieve models more accurate than the existing ones.
DOI Link
ISSN
Publisher
Hindawi Limited
Volume
2022
First Page
2557795
Last Page
2557795
Disciplines
Computer Sciences | Medicine and Health Sciences
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Ullah, Zahid; Saleem, Farrukh; Jamjoom, Mona; Fakieh, Bahjat; Kateb, Faris; Ali, Abdullah Marish; and Shah, Babar, "Detecting High-Risk Factors and Early Diagnosis of Diabetes Using Machine Learning Methods" (2022). All Works. 5405.
https://zuscholars.zu.ac.ae/works/5405
Indexed in Scopus
no
Open Access
yes
Open Access Type
Gold: This publication is openly available in an open access journal/series