Document Type

Article

Source of Publication

IEEE Access

Publication Date

10-24-2022

Abstract

Sentiment analysis has been instrumental in developing artificial intelligence when applied to various domains. However, most sentiments and emotions are temporal and often exist in a complex manner. Several emotions can be experienced at the same time. Instead of recognizing only categorical information about emotions, there is a need to understand and quantify the intensity of emotions. The proposed research intends to investigate a quantum-inspired approach for quantifying emotional intensities in runtime. The inspiration comes from manifesting human cognition and decision-making capabilities, which may adopt a brief explanation through quantum theory. Quantum state fidelity was used to characterize states and estimate emotion intensities rendered by subjects from the Amsterdam Dynamic Facial Expression Set (ADFES) dataset. The Quantum variational classifier technique was used to perform this experiment on the IBM Quantum Experience platform. The proposed method successfully quantifies the intensities of joy, sadness, contempt, anger, surprise, and fear emotions of labelled subjects from the ADFES dataset.

ISSN

2169-3536

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Volume

PP

Issue

99

First Page

1

Last Page

1

Disciplines

Computer Sciences

Keywords

Sentiment analysis, Emotion recognition, Machine learning, Semantics, Computational modeling, Machine learning algorithms, Classification algorithms, Quantum computing

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

no

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS