Document Type
Article
Source of Publication
Sustainability (Switzerland)
Publication Date
12-1-2022
Abstract
Our work is focused on developing an autonomous robot to monitor greenhouses and large fields. This system is designed to operate autonomously to extract useful information from the plants based on precise GPS localization. The proposed robot is based on an RGB camera for plant detection and a multispectral camera for extracting the different special bands for processing, and an embedded architecture integrating a Nvidia Jetson Nano, which allows us to perform the required processing. Our system uses a multi-sensor fusion to manage two parts of the algorithm. Therefore, the proposed algorithm was partitioned on the CPU-GPU embedded architecture. This allows us to process each image in 1.94 s in a sequential implementation on the embedded architecture. The approach followed in our implementation is based on a Hardware/Software Co-Design study to propose an optimal implementation. The experiments were conducted on a tomato farm, and the system showed that we can process different images in real time. The parallel implementation allows to process each image in 36 ms allowing us to satisfy the real-time constraints based on 5 images/s. On a laptop, we have a total processing time of 604 ms for the sequential implementation and 9 ms for the parallel processing. In this context, we obtained an acceleration factor of 66 for the laptop and 54 for the embedded architecture. The energy consumption evaluation showed that the prototyped system consumes a power between 4 W and 8 W. For this raison, in our case, we opted a low-cost embedded architecture based on Nvidia Jetson Nano.
DOI Link
ISSN
Publisher
MDPI AG
Volume
14
Issue
23
Disciplines
Medicine and Health Sciences
Keywords
autonomous robot, embedded architecture, energy, GPS localization, greenhouses, multi-sensor fusion, multispectral camera, real-time
Scopus ID
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Saddik, Amine; Latif, Rachid; Taher, Fatma; El Ouardi, Abdelhafid; and Elhoseny, Mohamed, "Mapping Agricultural Soil in Greenhouse Using an Autonomous Low-Cost Robot and Precise Monitoring" (2022). All Works. 5561.
https://zuscholars.zu.ac.ae/works/5561
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Gold: This publication is openly available in an open access journal/series