Document Type
Article
Source of Publication
IEEE Access
Publication Date
1-19-2023
Abstract
Sentiment Analysis is a modern discipline at the crossroads of data mining and natural language processing. It is concerned with the computational treatment of public moods shared in the form of text over social networking websites. Social media users express their feelings in conversations through cross-lingual terms, intensifiers, enhancers, reducers, symbols, and Net Lingo. However, the generic Sentiment Analysis (SA) research lacks comprehensive coverage about such abstruseness. In particular, they are inapt in the semantic orientation of Crosslingual based code switching, capitalization and accentuation of opinionative text due to the lack of annotated corpora, computational resources, linguistic processing and inefficient machine translation. This study proposes a Heuristic Framework for Crosslingual Sentiment Analysis (HF-CSA) and takes into consideration the NetLingua, code switching, opinion intensifiers, enhancers and reducers in order to cope with intrinsic linguistic peculiarities. The performance of proposed HF-CSA is examined on Twitter dataset and robustness of system is assessed on SemEval-2020 task9. The results show that HF-CSA outperformed the existing systems and reached to 71.6% and 76.18% of average accuracy on Clift and SemEval-2020 datasets respectively.
DOI Link
ISSN
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Volume
PP
Issue
99
First Page
1
Last Page
1
Disciplines
Computer Sciences | Linguistics
Keywords
Sentiment analysis, Semantics, Switches, Codes, Task analysis, Social networking (online), Machine translation, Natural language processing, Linguistics
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Raza, Arslan Ali; Habib, Asad; Ashraf, Jawad; Shah, Babar; and Moreira, Fernando, "Semantic Orientation of Crosslingual Sentiments: Employment of Lexicon and Dictionaries" (2023). All Works. 5622.
https://zuscholars.zu.ac.ae/works/5622
Indexed in Scopus
no
Open Access
yes
Open Access Type
Gold: This publication is openly available in an open access journal/series