Document Type
Article
Source of Publication
IEEE Access
Publication Date
5-8-2023
Abstract
Iron deficiency in plants causes iron chlorosis which frequently occurs in soils that are alkaline (pH greater than 7.0) and that contain lime. This deficiency turns affected plant leaves to yellow, or with brown edges in advanced stages. The goal of this research is to use the deep learning model to identify a nutrient deficiency in plant leaves and perform soil analysis to identify the cause of the deficiency. Two pre-trained deep learning models, Single Shot Detector (SSD) MobileNet v2 and EfficientDet D0, are used to complete this task via transfer learning. This research also contrasts the architecture and performance of the models at each stage and freezes the models for future use. Classification accuracy ranged from 93% to 98% for the SSD Mobilenet v2 model. Although this model took less time to process, its accuracy level was lower. While the EfficientDet D0 model required more processing time, it provided very high classification accuracy for the photos, ranging from 87% to 98.4%. These findings lead to the conclusion that both models are useful for real-time classifications, however, the EfficientDet D0 model may perform significantly better.
DOI Link
ISSN
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Volume
11
First Page
46949
Last Page
46955
Disciplines
Computer Sciences
Keywords
Transfer learning, Plant diseases, Iron, Feature extraction, Deep learning, Convolutional neural networks, Fluorescence, Soil measurements
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Majdalawieh, Munir; Khan, Shafaq; and Islam, Md. T., "Using Deep Learning Model to Identify Iron Chlorosis in Plants" (2023). All Works. 5849.
https://zuscholars.zu.ac.ae/works/5849
Indexed in Scopus
no
Open Access
yes
Open Access Type
Gold: This publication is openly available in an open access journal/series