Document Type

Article

Source of Publication

PLoS ONE

Publication Date

7-1-2023

Abstract

The 2019 novel coronavirus (SARS-CoV-2 / COVID-19), with a point of origin in Wuhan, China, has spread rapidly all over the world. It turned into a raging pandemic wrecking havoc on health care facilities, world economy and affecting everyone’s life to date. With every new variant, rate of transmission, spread of infections and the number of cases continues to rise at an international level and scale. There are limited reliable researches that study microdroplets spread and transmissions from human sneeze or cough in the airborne space. In this paper, we propose an intelligent technique to visualize, detect, measure the distance of spread in a real-world settings of microdroplet transmissions in airborne space, called “COVNET45”. In this paper, we investigate the microdroplet transmission and validate the measurements accuracy compared to published researches, by examining several microscopic and visual images taken to investigate the novel coronavirus (SARS-CoV-2 / COVID-19). The ultimate contribution is to calculate the spread of the microdroplets, measure it precisely and provide a graphical presentation. Additionally, the work employs machine learning and five algorithms for image optimization, detection and measurement.

ISSN

1932-6203

Publisher

Public Library of Science (PLoS)

Volume

18

Issue

7 July

Disciplines

Computer Sciences

Keywords

COVID-19, microdroplet spread, airborne transmission, artificial intelligence, image optimization

Scopus ID

85165335725

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS