Document Type
Article
Source of Publication
Mathematics
Publication Date
6-1-2024
Abstract
Investigating dependence structures across various fields holds paramount importance. Consequently, the creation of new copula families plays a crucial role in developing more flexible stochastic models that address the limitations of traditional and sometimes impractical assumptions. The present article derives some reasonable conditions for validating a copula of the ratio-type form (Formula presented.). It includes numerous examples and discusses the admissible range of parameter (Formula presented.), showcasing the diversity of copulas generated through this framework, such as Archimedean, non-Archimedean, positive dependent, and negative dependent copulas. The exploration extends to the upper bound of a general family of copulas, (Formula presented.), and important properties of the copula are discussed, including singularity, measures of association, tail dependence, and monotonicity. Furthermore, an extensive simulation study is presented, comparing the performance of three different estimators based on maximum likelihood, (Formula presented.) -inversion, and the moment copula method.
DOI Link
ISSN
Publisher
MDPI AG
Volume
12
Issue
11
Disciplines
Mathematics
Keywords
bivariate copula, copula moments, Fréchet–Hoeffding limit, maximum likelihood, ratio copula, singularity, ρ-inversion
Scopus ID
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
El Ktaibi, Farid; Bentoumi, Rachid; and Mesfioui, Mhamed, "On the Ratio-Type Family of Copulas" (2024). All Works. 6751.
https://zuscholars.zu.ac.ae/works/6751
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Gold: This publication is openly available in an open access journal/series