Document Type

Article

Source of Publication

PLoS ONE

Publication Date

8-1-2024

Abstract

Path planning is a crucial element of mobile robotics applications, attracting considerable interest from academics. This paper presents a path-planning approach that utilises the Enhanced Firefly Algorithm (EFA), a new meta-heuristic technique. The Enhanced Firefly Algorithm (FA) differs from the ordinary FA by incorporating a linear reduction in the α parameter. This modification successfully resolves the constraints of the normal FA. The research involves experiments on three separate maps, using the regular FA and the suggested Enhanced FA in 20 different runs for each map. The evaluation criteria encompass the algorithms’ ability to move from the initial location to the final position without experiencing any collisions. The assessment of path quality relies on elements such as the distance of the path and the algorithms’ ability to converge and discover optimum solutions. The results demonstrate significant improvements made by the Enhanced FA, with a 10.270% increase in the shortest collision-free path for Map 1, a 0.371% increase for Map 2, and a 0.163% increase for Map 3, compared to the regular FA. This work highlights the effectiveness of the Enhanced Firefly Algorithm in optimising path planning for mobile robotics applications, providing potential improvements in navigation efficiency and collision avoidance.

ISSN

1932-6203

Publisher

Public Library of Science (PLoS)

Volume

19

Issue

8 August

Disciplines

Computer Sciences

Keywords

Enhanced Firefly Algorithm, Path planning, Mobile robotics, Meta-heuristic technique, Navigation efficiency

Scopus ID

85201056671

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS