Document Type

Article

Source of Publication

Climate Dynamics

Publication Date

10-16-2024

Abstract

Atmospheric blocking is a phenomenon that can lead to extreme weather events over a large region, yet its causes are not fully understood. Global climate models show limitations in representing Northern Hemisphere blocking, especially its frequency, and decadal variability in Greenland blocking in summer in the recent decades. In this study we evaluate the ability of high-resolution (HighResMIP) Earth System Models (ESMs) to simulate summer blocking over the Greenland area, using different but complementary methods to describe the characteristics of blocking. We find that the HighResMIP ensemble can reproduce the spatial pattern of Greenland blocking events, albeit with systematic biases, and capture the relative frequencies of the main blocking patterns: namely the wave breaking structure, North Atlantic ridge, and omega-type blocking. However, the HighResMIP ensemble fails to simulate the observed temporal variations of Greenland blocking index (GB2) and the extremely high values of daily GB2 observed in recent decades. In addition, we do not find clearly superior representation of blocking features from higher-resolution in HighResMIP models compared with lower-resolution models. We also find large sea surface temperature (SST) biases over the North Atlantic and seas surrounding Greenland, and biases in moisture transport over the North Atlantic toward Greenland, especially over the western flank of blocking areas, which might together contribute to model biases in the representation of blocking magnitude.

ISSN

0930-7575

Publisher

Springer Science and Business Media LLC

First Page

10503

Last Page

10523

Disciplines

Physical Sciences and Mathematics

Keywords

Atmospheric Dynamics, Blocking, Climate Models, Greenland, Weather Regimes

Scopus ID

85206852655

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Hybrid: This publication is openly available in a subscription-based journal/series

Share

COinS